153 research outputs found

    Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images

    Get PDF
    1. Predicting stand structure parameters for tropical forests from remotely sensed data has numerous important applications, such as estimating above-ground biomass and carbon stocks and providing spatial information for forest mapping and management planning, as well as detecting potential ecological determinants of plant species distributions. As an alternative to direct measurement of physical attributes of the vegetation and individual tree crown delineation, we present a powerful holistic approach using an index of canopy texture that can be extracted from either digitized air photographs or satellite images by means of two-dimensional spectral analysis by Fourier transform. 2. We defined an index of canopy texture from the ordination of the Fourier spectra computed for 3545 1-ha square images of an undisturbed tropical rain forest in French Guiana. This index expressed a gradient of coarseness vs. fineness resulting from the relative importance of small, medium and large spatial frequencies in the Fourier spectra. 3. Based on 12 1-ha control plots, the canopy texture index showed highly significant correlations with tree density (R2 = 0·80), diameter of the tree of mean basal area (R2 = 0·71), distribution of trees into d.b.h. classes (R2 = 0·64) and mean canopy height (R2 = 0·57), which allowed us to produce reasonable predictive maps of stand structure parameters from digital aerial photographs. 4. Synthesis and applications. Two-dimensional Fourier analysis is a powerful method for obtaining quantitative characterization of canopy texture, with good predictive ability on stand structure parameters. Forest departments should use routine forest inventory operations to set up and feed regional databases, featuring both tree diameter figures and digital canopy images, with the ultimate aims of calibrating robust regression relationships and deriving predictive maps of stand structure parameters over large areas of tropical forests. Such maps would be particularly useful for forest classification and to guide field assessment of tropical forest resources and biodiversity

    Growth rings in tropical trees : role of functional traits, environment, and phylogeny

    Get PDF
    Acknowledgments Financial support of the Centre National de la Recherche Scientifique (USR 3330), France, and from the Rufford Small Grants Foundation (UK) is acknowledged. We thank the private farmers and coffee plantation companies of Kodagu for providing permissions and logistical support for this project. We are grateful to N. Barathan for assistance with slide preparation and data entry, S. Aravajy for botanical assistance, S. Prasad and G. Orukaimoni for technical inputs, and A. Prathap, S. Shiva, B. Saravana, and P. Shiva for field assistance. The corresponding editor and three anonymous reviewers provided insightful comments that improved the manuscript.Peer reviewedPostprin

    Biomass prediction in tropical forests : the canopy grain approach

    Get PDF
    18 pagesThe challenging task of biomass prediction in dense and heterogeneous tropical forest requires a multi-parameter and multi-scale characterization of forest canopies. Completely different forest structures may indeed present similar above ground biomass (AGB) values. This is probably one of the reasons explaining why tropical AGB still resists accurate mapping through remote sensing techniques. There is a clear need to combine optical and radar remote sensing to benefit from their complementary responses to forest characteristics. Radar and Lidar signals are rightly considered to provide adequate measurements of forest structure because of their capability of penetrating and interacting with all the vegetation strata. However, signal saturation at the lowest radar frequencies is observed at the midlevel of biomass range in tropical forests (Mougin et al. 1999; Imhoff, 1995). Polarimetric Interferometric (PolInsar) data could improve the inversion algorithm by injecting forest interferometric height into the inversion of P-band HV polarization signal. Within this framework, the TROPISAR mission, supported by the Centre National d'Etudes Spatiales (CNES) for the preparation of the European Space Agency (ESA) BIOMASS program is illustrative of both the importance of interdisciplinary research associating forest ecologists and physicists and the importance of combined measurements of forest properties. Lidar data is a useful technique to characterize the vertical profile of the vegetation cover (e.g. Zhao et al. 2009) which in combination with radar (Englhart et al. 2011) or optical (e.g. Baccini et al. 2008; Asner et al. 2011) and field plot data may allow vegetation carbon stocks to be mapped over large areas of tropical forest at different resolution scales ranging from 1 hectare to 1 km². However, small-footprint Lidar data are not yet accessible over sufficient extents and with sufficient revisiting time because its operational use for tropical studies remains expensive. At the opposite, very-high (VHR) resolution imagery, i.e. approximately 1-m resolution, provided by recent satellite like Geoeye, Ikonos, Orbview or Quickbird as well as the forthcoming Pleiades becomes widely available at affordable costs, or even for free in certain regions of the world through Google Earth®. Compared to coarser resolution imagery with pixel size greater than 4 meters, VHR imagery greatly improves thematic information on forest canopies. Indeed, the contrast between sunlit and shadowed trees crowns as visible on such images (Fig. 1) is potentially informative on the structure of the forest canopy while new promising methods now exist for analyzing these fine scale satellite observations (e.g. Bruniquel-Pinel & Gastellu-Etchegorry, 1998; Malhi & Roman-Cuesta, 2008; Rich et al. 2010). Besides, we believe that there is also a great potential in similarly using historical series of digitized aerial photographs that proved to be useful in the past for mapping large extents of unexplored forest (Le Touzey, 1968; Richards, 1996) for quantifying AGB changes through time. This book chapter presents the advancement of a research program undertaken by our team for estimating high biomass mangrove and terra firme forests of Amazonia using canopy grain from VHR images (Couteron et al. 2005; Proisy et al. 2007; Barbier et al., 2010; 2011). We present in a first section, the canopy grain notion and the fundamentals of the Fourier-based Textural Ordination (FOTO) method we developed. We then introduce a dual experimental-theoretical approach implemented to understand how canopy structure modifies the reflectance signal and produces a given texture. We discuss, for example, the influence of varying sun-view acquisition conditions on canopy grain characteristics. A second section assesses the potential and limits of the canopy grain approach to predict forest stand structure and more specifically above ground biomass. Perspectives for a better understanding of canopy grain-AGB relationships conclude this work

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost
    corecore